
A Real-Time Radio Transient Pipeline for ARTS
Alessio Sclocco, Joeri van Leeuwen

ASTRON
Netherlands Institute for Radio Astronomy

Dwingeloo, the Netherlands
sclocco@astron.nl, leeuwen@astron.nl

Henri E. Bal
Faculty of Sciences

Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

h.e.bal@vu.nl

Rob V. van Nieuwpoort
NLeSC

Netherlands eScience Center
Amsterdam, the Netherlands

r.vannieuwpoort@esciencecenter.nl

Abstract—ARTS is a new instrument designed to discover
transient astronomical sources in the radio spectrum. To operate,
it will require a high-performance radio transient pipeline,
capable of processing hundreds of data streams in real-time,
at a data rate of 36 GB/s. What makes the processing of these
data streams challenging is the fact that radio signals received
from space are dispersed by the interaction with the inter-stellar
medium, and dispersion is a function of the distance between
source and receiver. Because the distance of yet to discover objects
is not known in advance, every data stream needs to be processed
for thousands of trial distances, an extremely time consuming
process.

In this paper we introduce and describe a prototype for the
ARTS radio transient pipeline. Our proposed pipeline is highly
parallel and uses Graphics Processing Units as accelerators for its
computational kernels. We test the pipeline on two different and
widely used GPUs, the HD7970 from AMD and the K20X from
NVIDIA, and show linear scalability and real-time performance
on both. Using these performance results, we provide an estimate
on the size of the system necessary to implement ARTS, and a
lower bound on its power consumption. The results of this paper
are also relevant in the context of designing the Square Kilometer
Array.

Index Terms—radio astronomy; graphics processing units;
dedispersion

I. INTRODUCTION

ARTS, the Apertif Radio Transient System, is a new
instrument designed to survey the sky for transient radio
sources, such as pulsars [1] or fast radio bursts [2]. To find
new transients ARTS will process, in real-time, 444 different
streams of input data received from the Apertif instrument on
Westerbork [3]. Real-time processing is not just technically
necessary to cope with an input data rate of more than 36 GB/s,
but it is also important to allow astronomers to save a copy
of the recorded data at the highest possible resolution, and to
trigger follow-up observations in other frequency bandwidths
or with other instruments. However, detecting radio transients
in real-time, and at such high data rates, is not trivial.

In principle, detecting a transient object is a straightforward
process that consists in simply monitoring a stream of data
looking for a peak with high enough signal-to-noise ratio
(SNR). Even considering the need to perform this process
in real-time, the computational requirements associated with
it would still be low. Unfortunately, electromagnetic signals
generated in space interact with external factors, and what is
captured on Earth looks different from the original signal. In
particular, the main challenge in a radio transient pipeline is

to revert the effects of dispersion. Dispersion is caused by
the interaction between the emitted signal and the free elec-
trons in the inter-stellar medium, and results in the different
frequencies composing a signal traveling at different relative
velocities. Therefore, what was originally a detectable peak
with high SNR, becomes a scattered series of small peaks,
easily drawn in the background noise. To detect the signal it
is thus necessary to process the received data and reconstruct
the original signal, in a process called dedispersion.

Because the effects of dispersion are bigger the farther
the emitting source is from the receiver, and because in a
search for new objects the distance is not known a priori,
each input stream must be processed and reconstructed for
a large number of possible trial distances. This brute-force
search is what makes real-time transient search a difficult
and interesting problem. A way to speedup this search is to
process the different trial distances, and the different input
streams, in parallel. Given that we already used Graphics
Processing Units (GPUs) to accelerate dedispersion [4], and
that these accelerators have been used for similar, though less
computationally demanding, pipelines [5] [6], in this paper we
introduce a prototype for a GPU accelerated, real-time radio
transient pipeline for ARTS.

To summarize our contributions, in this paper we: (1)
introduce a new parallel and GPU accelerated radio transient
pipeline, (2) show that our proposed pipeline achieves real-
time performance and linear scalability, and (3) estimate the
size of the ARTS system and a lower bound on its power
consumption. Although our focus is on ARTS, the Square
Kilometer Array (SKA) will also need a high-performance
transient pipeline, one able to cope with an estimated data
rate of more than 10 Pb/s [7]. Our pipeline can also be seen
as a first step into addressing the challenges of the SKA.

II. THE RADIO TRANSIENT PIPELINE

As highlighted in Section I, to find new transient sources in
the data captured by Apertif, ARTS will process, in real-time,
the data of 444 input streams, or beams. Figure 1 contains
an overview of our proposed pipeline; the whole pipeline is
executed for each second of data in each of the 444 beams.
Although we focus on describing our specific solution to the
problem of finding radio transients in real-time, the main
computational kernels of this pipeline are generic and can be
used in other pipelines as well.

Fig. 1. Overview of the radio transient pipeline. In the figure, ellipses represent computational kernels, circles represent memory transfers and boxes data
structures. Yellow objects are stored or executed on the GPU, white objects on the host.

Fig. 2. The effect of dispersion on a pulsating signal, courtesy of Lorimer
and Kramer [1].

The main computational kernels of this pipeline are called
dedispersion, SNR and thresholding. Of these three kernels,
dedispersion and SNR are executed on the GPU and threshold-
ing is executed on the host. Data are copied between host and
device in two distinct memory operations; the first operation
transfers the input time series on the GPU, while the second
operation transfers the computed SNR values on the host for
further processing. Intermediate data produced and consumed
on the GPU are kept in device memory and not transferred
back and forth.

The first, and more computationally intensive, kernel of our
pipeline is dedispersion. As already mentioned in Section I,
dedispersion is the algorithm used to reverse the effects of
dispersion. Because of dispersion, the different frequencies of
the signal emitted by a radio transient source are scattered
in time, causing a significant reduction in the signal’s SNR;
the effect of dispersion on a pulsating signal is exemplified
by Figure 2. To reverse this effect, the different frequencies
of a time series are shifted in time, relatively to each other,
and realigned, before being summed together to recreate the
original signal. Assuming that this shift is known, the number
of operations necessary to dedisperse one second of data is
O(c × s), where c is the number of different frequencies,
called channels, the input data is divided into, and s is the
number of samples per second. However, in the search for
new transients the shift is not known in advance, thus a
large number of different shifts are tried in what is known
as a brute-force search; the different trial values are called
Dispersion Measures (DMs). Therefore, in a survey with d
DMs, the computational cost of dedispersing one second of
data is O(c × s × d) floating point operations per beam. If

for ARTS this means a required throughput of 40 GFLOP/s
per beam, and 18 TFLOP/s in total, what it means for the
SKA is a required throughput of 4 TFLOP/s per beam, and
10 PFLOP/s in total. Moreover, dedispersion is a memory-
bound algorithm and this makes almost impossible to achieve
peak performance on any platform. The design, parallelization
and implementation details of the used dedispersion algorithm
are available in [4], thus we are not going to discuss them
further in this paper.

The next computational kernel in our pipeline is called SNR.
In this step, each of the d dedispersed time series generated
by the previous kernel is processed, independently, to compute
the SNR of the sample with highest intensity. The SNR of
max, i.e. the sample with highest intensity in the time series,
is defined as (max−µ)/σ, where µ is the mean value of
the time series and σ the standard deviation. These statistical
properties of each time series are computed, in parallel and
on the GPU, using Chan’s algorithm [8]. In our kernel, each
dedispersed time series is assigned to a different block of
threads. Inside a block, each thread computes maximum,
mean and standard deviation of a subset of samples, and then
combines these intermediate results with the one computed by
the other threads to produce the final SNR value associated
with a given DM.

The last computational kernel of our pipeline is threshold-
ing. In this kernel, the d elements array containing the SNR
values is scanned to look for values that exceed a certain
user specified threshold. If a value exceeds this threshold,
an entry is added to the pipeline output containing the id
of the DM associated with this value, and a time stamp.
Before thresholding takes place, the array containing the SNR
values computed by the previous kernel is copied back to the
host. This is because thresholding, not benefiting from massive
parallelization, is the only computational kernel of our pipeline
that is not executed by an accelerator but by the host.

Our discussion so far covers the steps necessary to process a
single beam, but our pipeline natively supports the processing
of multiple beams. Because different beams are completely
independent from each other, and can thus be independently
processed, we decided to execute one instance of the pipeline
for each beam. The pipeline can either be executed sequen-
tially, one beam after the other, or in parallel, with different
instances of the pipeline running at the same time, each
instance associated with a different beam. Although computing
different beams in parallel makes it possible to overlap the

Platform Cores GFLOP/s GB/s Watt
AMD HD7970 64× 32 3,788 264 250
NVIDIA K20X 192× 14 3,935 250 235

TABLE I
CHARACTERISTICS OF THE TESTED PLATFORMS.

Samples per Second 20,000
Center Frequency 1,425 MHz
Total Bandwidth 300 MHz
Channels 1,024
Channel Bandwidth 292 kHz
First DM 0 pc/cm3

DM Step 0.03 pc/cm3

TABLE II
OBSERVATIONAL PARAMETERS USED FOR THE EXPERIMENT.

memory transfers with the execution of the computational
kernels, experiments showed that this strategy does not lead
to better performance on all platforms, due to driver issues.
Therefore, we decided to support both modes in the pipeline,
leaving the final choice to the user.

III. EXPERIMENTAL SETUP

To test both performance and scalability of our pipeline, we
measure its execution time on two different GPUs: an AMD
HD7970 and a NVIDIA K20X. The main characteristics of
these two platforms are described in Table I; in particular,
the table shows the number of cores that each GPU has, the
theoretical peaks for single precision floating point operations
per second and memory bandwidth, and the thermal design
power (TDP).

The source code of our pipeline, the same for the two
GPUs, is implemented in C++ and OpenCL, with OpenCL
used to parallelize the computational kernels executed on the
accelerators. The OpenCL runtime used for the AMD HD7970
is the AMD APP SDK 2.9, and the runtime used for the
NVIDIA K20X is CUDA 5.5; the C++ compiler is version
4.9.0 of the GCC. The two GPUs are installed in different
computing nodes of the Distributed ASCI Supercomputer 4
(DAS-4); DAS-4 uses CentOS version 6 as operating system,
and version 2.6.32 of the Linux kernel.

The observational parameters used in this experiment are
described in Table II; they have been chosen to realistically
represent one of the configurations in which ARTS will op-
erate. The OpenCL kernels were automatically tuned for both
GPUs and for this specific scenario. This tuning is necessary
to achieve better performance, and to provide a more fair
comparison between the two devices; an in depth description
of the auto-tuning process for dedispersion can be found in [4].

The pipeline is executed on each platform varying the
number of trial DMs and the number of beams; for simplicity,
the used values are the powers of two between 25 and 211

for the DMs, and between 20 and 23 for the beams. Each run
of the experiment involves the processing of 60 seconds of
synthetically generated data; the total execution time and the
execution time of each of the pipeline’s steps are measured
using software timers.

 1

 10

 100

 16 32 64 128 256 512 1024 2048 4096

T
im

e
 (

s)

Dispersion Measures

real-time
1 beams
2 beams
4 beams
8 beams

Fig. 3. Pipeline performance on the HD7970.

 1

 10

 100

 1000

 16 32 64 128 256 512 1024 2048 4096

T
im

e
 (

s)

Dispersion Measures

real-time
1 beams
2 beams
4 beams
8 beams

Fig. 4. Pipeline performance on the K20X.

IV. PERFORMANCE RESULTS

In this section we describe the results of the experiment
described in Section III. Figures 3 and 4 present the execution
time of the pipeline, running on the HD7970 and K20X
respectively; the two figures are log-log plots. The first result
is that, for both GPUs, the pipeline scales linearly in both the
number of beams and trial DMs. The performance, however,
are different for the two devices, with the AMD GPU being
faster than the NVIDIA one in almost all test cases. The
reason for the difference in performance between the two
devices is simple enough: the most time consuming step of
the whole pipeline is dedispersion, and the HD7970 is faster
at dedispersion than the K20X. While a complete analysis of
dedispersion performance can be found in [4], we can say that
the higher achievable memory bandwidth of the AMD GPU,
coupled with its better cache system, makes it a better platform
for a memory-bound kernel like dedispersion. The black line
labeled “real-time” in the figures represents the threshold over
which the pipeline is too slow to process the 60 seconds of
input data in less than 60 seconds of execution time. As can be
seen from the results, the HD7970 always satisfy the real-time
requirement, while the K20X is unable to do so for a number
of DMs higher than 1,024 and 8 beams.

Figure 5 provides a performance breakdown of the

 0

 20

 40

 60

 80

 100

HD7970 K20X

%
 o

f
E
x
e
cu

ti
o
n
 T

im
e Input Handling

Input Transfer
Dedispersion
SNR
Output Transfer
Thresholding

Fig. 5. Performance breakdown of the pipeline, 1 beam and 2,048 DMs.

 0

 2

 4

 6

 8

 10

 12

B
e
a
m

/s

HD7970
K20X

Fig. 6. Throughput in beams per second, 2,048 DMs.

pipeline’s execution time processing 2,048 DMs and a single
beam. This breakdown is useful to analyze where the pipeline’s
bottlenecks are, and check if they are the same for each
platform. From the figure we see that, for both platforms,
63 to 82 percent of the execution time is spent executing
the kernels (i.e. dedispersion and SNR) on the GPU, 35 to
17 percent on memory transfers from the host to the device,
and only less than 1 percent on transfering the output and
thresholding. Therefore, to increase the performance of this
pipeline all future efforts should be dedicated to optimizing
and further improving the two computational kernels, and
especially dedispersion.

 0

 5000

 10000

 15000

 20000

D
M

/s

HD7970
K20X

Fig. 7. Throughput in DMs per second, 1 beam.

Figures 6 and 7 shows the throughput of our pipeline, in
terms of beams and DMs that can be processed per second.
The results show that the HD7970 could compute 11 beams
per second, in real-time, or more than 22,000 DMs in a single
beam scenario; as expected from previous results, this is more
than twice the throughput achieved by the K20X. Although the
results presented so far can be used to provide a comparison
between these two GPUs in the context of radio transient
surveys, the same results can also be used to estimate the
number of GPUs that would be necessary to build the transient
pipeline of ARTS as of today.

ARTS will have to survey 444 beams in real-time, and
process each of them for 2,000 different trial DMs. This means
that we could implement ARTS today, using our pipeline, with
41 AMD HD7970, or 111 NVIDIA K20X GPUs. As expected,
the higher throughput of the AMD GPU makes it possible
to build the same instrument with less hardware. Although it
may seem exaggerated to build a system capable of hundreds
of TFLOP/s for a problem that only requires tens of them,
we need to stress that the compute kernels of this pipeline
are all memory-bound and this makes impossible to achieve
peak performance. Still, GPUs outperform CPUs by a factor
of 30 [4] because of their higher memory bandwidth.

A more compact system is not only easier to manage and
less expensive to build, but it is also less power hungry, thus
cheaper to operate. Just taking into account the TDP of the
GPUs, provided in Table I, we can provide here a lower
bound on the power necessary to operate ARTS: 10.2 kW
using the AMD solution, or 26 kW for the NVIDIA one.
We believe that the introduction of new technologies, such
as three-dimensional stacked memory, would help us reduce
this lower bound even further in the coming months.

V. CONCLUSIONS

In this paper we introduced a prototype for the radio
transient pipeline of ARTS. This pipeline will have to process,
in real-time, 444 different input beams at a data rate of 36
GB/s, and the processing will require a throughput of more
than 18 TFLOP/s. Therefore, we designed and developed
a pipeline that leverages the massive amount of parallelism
provided by modern GPUs. Our pipeline, implemented using
C++ and OpenCL, is both high-performance and portable, and
can be automatically tuned for different hardware platforms
and observational scenarios.

The performance results presented in this paper show that
our pipeline scales linearly, on both tested GPUs, in the
number of beams and trial DMs. Moreover, we are able to
show that this pipeline can process in real-time thousands of
DMs, even for more than one beam. In particular, using an
AMD HD7970 GPU we show that this pipeline can process
11 beams per second at 2,048 DMs, or more than 22,000
DMs in a single beam scenario. We can then conclude that,
using currently available hardware, ARTS could be built today
using 41 GPUs, and require 10.2 kW of power for running this
pipeline.

REFERENCES

[1] D. Lorimer and M. Kramer, Handbook of pulsar astronomy. Cambridge
Univ Pr, 2005, vol. 4.

[2] D. R. Lorimer, M. Bailes, M. A. McLaughlin, D. J. Narkevic, and
F. Crawford, “A bright millisecond radio burst of extragalactic origin,”
Science, vol. 318, no. 5851, pp. 777–780, 2007.

[3] M. A. W. Verheijen, T. A. Oosterloo, W. A. van Cappellen, L. Bakker,
M. V. Ivashina, and J. M. van der Hulst, “Apertif, a focal plane array for
the WSRT,” AIP Conference Proceedings, vol. 1035, no. 1, pp. 265–271,
2008.

[4] A. Sclocco, H. E. Bal, J. Hessels, J. van Leeuwen, and R. V. van
Nieuwpoort, “Auto-tuning dedispersion for many-core accelerators,” In-
ternational Parallel and Distributed Processing Symposium (IPDPS),
2014.

[5] W. Armour, A. Karastergiou, M. Giles, C. Williams, A. Magro, K. Za-
gkouris, S. Roberts, S. Salvini, F. Dulwich, and B. Mort, “A GPU-based
survey for millisecond radio transients using ARTEMIS,” in Astronomical
Data Analysis Software and Systems XXI, ser. Astronomical Society of
the Pacific Conference Series, vol. 461, Sep. 2012, p. 33.

[6] A. Magro, J. Hickish, and K. Z. Adami, “Multibeam GPU transient
pipeline for the medicina BEST-2 array,” Journal of Astronomical In-
strumentation, 2013.

[7] P. C. Broekema, R. V. van Nieuwpoort, and H. E. Bal, “Exascale high
performance computing in the square kilometer array,” in Proceedings
of the 2012 Workshop on High-Performance Computing for Astronomy.
New York, NY, USA: ACM, 2012, pp. 9–16.

[8] T. F. Chan, G. H. Golub, and R. J. Leveque, “Algorithms for computing
the sample variance: Analysis and recommendations,” The American
Statistician, vol. 37, no. 3, pp. 242–247, 1983.

